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ABSTRACT 
 
 
 
For the past eight years, the small automated telescope Raven has been 

tested in detecting and tracking deep space objects.  As the Raven has proven 

successful in tracking this regular and predictable orbit, its one arc-second 

accuracy made it a perfect candidate to attempt to accurately track the less 

predictable Highly Eccentric Orbit (HEO) objects.  Ranging data was obtained 

from the Sirius satellite radio company for the Sirius3 satellite (Satellite Control 

Center (SCC) # 26626).  This satellite was chosen for its long dwell time over the 

United States and for its favorable Raven tracking conditions.  Angles-only data 

obtained from another Raven telescope located at the AMOS Remote Maui 

Experiment (RME) facility was used to track the satellite of interest.  Then the 

Analytical Graphics, Inc. Satellite Tool Kit Orbit Determination (STK/OD) program 

was used to compare the accuracy of the orbit prediction using ranging tracking 

data from Sirius and angles-only tracking data from Raven.    This paper shows 

the improvement in orbit determination uncertainty obtained by adding Raven 

observations to the ranging data.  The Raven angles data improved the orbit 

plane uncertainty and eccentricity estimate differences by over 80% when used 

with the range observations. 
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I. INTRODUCTION  

A.   THE NEED FOR SPACE SURVEILLANCE  
The United States military’s Joint Publication 3-14 (Joint Doctrine for 

Space Operations) provides guidelines for planning and conducting joint space 

operations.  The Joint Chiefs of Staff (JCS) recognize space as a significant force 

multiplier for the United States military due to the reliance on space systems to 

carry out operations. In addition, the civil sector’s reliance on space is a major 

factor in operations planning.  Finally, it is recognized that current and future 

adversaries of the United States are dependent on their own space systems for 

intelligence collection against the United States. 

To that end, the Joint Publication 3-14 mandates that the United States 

establish space superiority: “The use of space control operations to support 

freedom of action in space will ensure the ability to provide space capabilities to 

the warfighter and deny the opposing force the same.”1  In order to establish 

space superiority, four space missions must be accomplished: Space Control, 

Space Force Enhancement, Space Support, and Space Force Application.  Since 

each of these mission areas is critical to achieving space superiority, they each 

have their own separate and distinct mission areas.   Space Control operations 

“..provide freedom of action in space for friendly forces, while, when directed, 

denying it to an adversary, and include a broad aspect of protection of US and 

US allied space systems and degradation of adversary space systems.”2  

Space Control encompasses the following mission areas: Protection, 

Prevention, Negation and Surveillance.  The following (Fig. 1) from JP 3-14 

shows the relation of the four mission areas to space control3: 

 

                                            
1 Joint Pub 3-14, August 2002, p. IV-3. 
2 Ibid., p. IV-5. 
3 Ibid., p IV-7. 
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Figure 1.   JP 3-14 Space Control Matrix (From Ref. [1]) 

 
 
B.   SPACE SURVEILLANCE 

While protection, prevention and negation are very important mission 

areas, this paper will focus on space surveillance.  Space surveillance is deemed 

“fundamental to the ability to conduct the space control mission” and is defined 

as  

 
..requiring robust space surveillance for continual awareness of 

orbiting objects; real-time search and targeting-quality information; threat 
detection, identification, and location…..conducted to detect, identify, 
assess, and track space objects and events to support space operations.  
Further, space situational awareness can be used to support terrestrially-
based operations, such as reconnaissance avoidance and missile 
defense.4   
 
It should be pointed out that space surveillance is critical to both providing 

freedom of action for friendly forces and denying freedom of action to enemy 

forces.  It is the only mission area which affects both offensive and defensive 

sides of Space Control.  By having a robust capability in space situational 

awareness, the United States will know when our forces are vulnerable to foreign 

                                            
4 Joint Pub 3-14, August 2002, p. IV-6. 



3 

intelligence-gathering space platforms in order to take timely and appropriate 

measures to defeat their attempts. 

 

C.   SPACE SURVEILLANCE NETWORK 
As with any other surveillance technique or regime, the more accurate the 

data on the desired object, the better.  In addition, minimizing the time and 

resources spent on obtaining highly accurate data is also a goal.  This allows for 

a timely, clear picture of the battlespace, allowing the commanders more time to 

concentrate on avoiding or defeating the threat. 

Current space situational awareness systems (e.g., the Air Force Space 

Surveillance Network (SSN)) are meeting space situational awareness 

requirements, but are doing so at great cost and take thousands of personnel to 

operate and maintain the systems throughout the world.  The Space Surveillance 

Network is comprised of over forty radar and optical sites throughout the world, 

with the majority located in the Northern Hemisphere.  In 2001, the Air Force 

spent over $60 million to operate the Space Surveillance Network5.  In today’s 

austere budget environment and with the age of the current SSN growing every 

year, it makes sense to investigate any and all ways to both increase accuracy 

and lower costs.   

 

D.   HANDS 
One partial solution to this problem may be the High Accuracy Network 

Determination System (HANDS), a concept future network of optical telescopes 

that autonomously track both near-earth and deep space satellites and provide 

high accuracy orbit information.6  Though HANDS is still in the development 

stage, the concept is to have thirty or more HANDS nodes spread throughout the 

world using automated telescopes to track earth orbiting objects of all regimes in 

conjunction with ranging data from selected SSN sites.   

                                            
5 Government Accounting Office Report GAO-02-403R, June 2002, p.2. 
6 Geosynchronous Orbit Determination Using HANDS, AAS 04-216, Sabol, Kelecy, Murai, 

February 2004, p. 1. 
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The angles data and ranging data are sent to the HANDS Operation 

Center by the Raven and AFSSN sites, where it is then fused and analyzed.  The 

improved orbit estimates are then delivered to the customer.  Fig. 2 below 

graphically illustrates the HANDS concept7: 
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Figure 2.   HANDS Architecture/CONOPS (From Ref. [3]) 
 

E.   RAVEN TELESCOPE 
The RAVEN telescope is planned to be the backbone of the HANDS 

network.  RAVEN is a class of small telescopes that combine inexpensive 

commercial hardware with state of the art astrometric image reduction 

techniques to produce high accuracy angular observations of satellites8.   

The RAVEN telescope system is comprised of five major components: the 

4 ft long telescope (0.37 meter mirror) and the dome which houses it, the 

telescope control computer, the Odin data processing workstation, the Global 

Positioning System (GPS) receiver and timing system, and a weather system                                             
7 Geosynchronous Orbit Determination using HANDS, AAS 04-216, Sabol, Kelecy, Murai, 

February 2004, p. 2. 
8Recent Developments of the RAVEN Small Telescope Program, AAS 02-131, Sabol and 

others, January 2002, p.1. 
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which detects levels of wind, temperature, and humidity9.  Raven telescope 

systems are designed to operate autonomously for weeks at a time without 

manual intervention10. 

This paper discusses the first trial of using the RAVEN telescope system 

for orbit determination accuracy against a HEO object.  It will detail the object 

RAVEN tracked, the computer program used to determine Raven’s accuracy, 

and the results using methods to differentiate between a range only solution and 

a range plus angles solution.   

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                            
9 Ibid, p. 7. 
10 Recent Developments of the RAVEN Small Telescope Program, AAS 02-131, Sabol and 

others, January 2002, p.12. 
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II. BACKGROUND 

A.   RAVEN TELESCOPE 
In the almost ten years since the Raven telescope prototype was built, 

Raven has become a very successful program.  It has evolved from a good idea 

into a real-world Air Force Space Surveillance Network (SSN) sensor, capable of 

autonomously detecting, tracking and reporting geosynchronous objects with one 

arc-second accuracy.   One Raven system is currently located at the summit of 

Mount Haleakala as a part of the Maui Space Surveillance Site (MSSS), 

providing space operators daily reports of deep space objects.  A second system 

lies at the base of the mountain, in the Air Force Maui Optical and 

Supercomputing Site (AMOS) Remote Maui Experiment (RME) facility, hosting a 

large number of tracking experiments11. 

Due to Raven’s documented success in tracking geosynchronous (GEO) 

objects with sub arc-second accuracy12, it was decided to see how well it could 

track highly eccentric objects (HEO), which are typically more difficult to track 

and predict.  HEOs typically have an inclination of 63.4 degrees so that perigee 

does not drift, and usually perigee is in the southern hemisphere. Since the SSN 

radars are in the northern hemisphere the HEO satellites are usually beyond the 

detection range of the radars. Then their high latitude in the northern hemisphere 

makes it more difficult to obtain optical observations.  Depending on the 

eccentricity the primary perturbations may be different at perigee and apogee. 

For those with a low perigee the high velocity at perigee means that atmospheric 

drag can have a significant effect as it passes through perigee. All of these 

factors combine to make their orbit determination and prediction more difficult.  

Generally speaking, if an object has an eccentricity greater than 0.1, it is 

considered highly eccentric.  The Raven telescope’s accurate tracking of GEO 

                                            
11Recent Developments of the RAVEN Small Telescope Program, AAS 02-131, Sabol and 

others, January 2002, p.2. 
12 High Accuracy Orbit Analysis Test Results Using HANDS, Kelecy, Sabol, and Murai, Sept 

2003, p.9. 
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objects with one arc-second accuracy make it the perfect candidate to track the 

less predictable HEO objects. 

 
 
B.   SIRIUS SATELLITE 

Though a Molniya-type orbit (e~0.7) is the most well-known of the highly 

eccentric orbits, access to current satellites flying in that orbit was not possible 

due to access to observations. To evaluate the effectiveness of the angle 

observations it is best to use a satellite with an accurate orbit. This allows one to 

compare the effectiveness of the orbit determination with angles only and with 

the addition of the angle observations to the primary observation set.  The Sirius 

satellite radio constellation with an eccentricity of ~0.27 satisfied this criterion.  

There are three satellites in the Sirius constellation.  Sirius3, (Space Control 

Center number 26626) was chosen due to its long dwell time over the United 

States and favorable tracking conditions, that is, it stays illuminated by the sun 

while Raven is in umber.  Sirius3 has a 24-hour period (16 hours in the northern 

hemisphere), and is commanded and tracked by a facility located in Quito, 

Ecuador (Lat 0.273 deg S, Long 281.5 deg E, altitude 2604 m).  Below is a quick 

synopsis of Sirius3’s orbital elements and a ground trace (Fig. 3): 

 
Epoch: 09 Dec 2004 03:30:47.475 
Semi-major axis: 42165 km 
Eccentricity: .268 
True argument of latitude: 33.64 deg 
Inclination: 63.83 deg 
Right Ascension of the Ascending Node (RAAN): 29.82 deg 
Argument of Perigee: 269.76 deg 
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Figure 3.    Sirius3 Ground Trace (From STK 6.1) 
 
The 24-hour period and 63.4 degree inclination mean that the Sirius orbit 

is a double resonant orbit. 

     Through Massachusetts Institute of Technology (MIT), nearly constant 

(over the time period vice every second of that time period) tracking and 

telemetry data for the Sirius3 satellite were obtained.  Dr. Paul Cefola of MIT and 

Mr. Chris Croom from Sirius provided files with range and angle observations.  

These observations were then converted to B3 format, necessary for 

computation in the orbit determination software.  There were approximately four 

months of Sirius observations to use.  The observations included both range and 

angle (azimuth and elevation) portions and covered a time period from December 

4, 2004 through March 31, 2005. The Sirius angle observations are not very 

accurate, they help in the initial orbit determination, but their accuracy is not 

sufficient to improve in the maintenance of the orbit, i.e., the differential 
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correction. Consequently, they were only used in the initial orbit determination. 

Only ranging data were used in the analysis runs.  

 
 
C.   STK/OD 

Analytical Graphic Incorporated’s (AGI) Satellite Tool Kit/Orbit 

Determination version 3.0 (STK/OD) was used for processing the observations 

and determining the orbit.  The program was responsible for all of the “heavy 

lifting” of data processing.  However, testing of the software was completed to 

ensure comparable results from separate approaches before serious attention 

could be used on the results.  The STK/OD output was compared against the 

industry-standard Goddard Trajectory Determination System (GTDS) program’s 

output.  Since GTDS is one of the recognized tools for orbit determination, 

settings in STK/OD were modified until output from STK/OD was similar to GTDS 

output. 

 
Many runs were made in trying to get the settings in STK/OD to provide a 

consistent result against GTDS.  Orbital elements, covariance, residual plots, 

solar radiation pressure (SRP) plots (dynamic in STK/OD, fixed in GTDS), and 

position consistency plots were some of the products compared to ensure 

consistency between STK/OD and GTDS.  Each run was built using the five main 

subsets of a STK/OD scenario: tracking facility, initial orbit determination, filter, 

smoother, and satellite. 

 
STK/OD requires that each scenario have the subsets listed above for 

every scenario run.  The Initial Orbit Determination (IOD) is run first, using six 

angles (azimuth and elevation measurements at three different times) 

observations in order to compute a rough orbit.  Once a rough orbit is generated, 

that orbit is transferred to the satellite.  There is a least squares method that can 

be run to further refine the orbit with 10-20 of the initial observations, but it was 

decided that since the IOD was fairly close to the actual orbit, the least squares 

option did not need to be used.    
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1. Kalman Filter 
STK/OD’s filter is a forward-time recursive algorithm consisting of a 

repeating pattern of filter time updates of the state estimate, which propagates 

the state estimate forward, and filter measurement update of the state estimate 

which incorporates the next measurement.  The filter uses the observations 

along with their location and a priori state estimate as the input, and provides 

optimal state estimates and realistic state error covariance matrices as the 

output, updated after every observation and at 1-second intervals13.  The initial 

covariance is input as “orbit uncertainty”, listed in the satellites settings.  It is 

input in the radial, in-track, cross tack (RIC) reference frame. The only 

requirement for the initial covariance is that it not be too small, with many 

observations the final covariance is essentially independent of the initial 

covariance as long as it is not too small. Typically, it should be at least an order 

of magnitude larger than the expected final covariance. The only effect of a larger 

initial covariance is that the time to converge to a “steady state” covariance 

increases.   For the runs, a diagonal covariance was used with 100,000 m for the 

RIC standard deviations and 100 m/sec for the RIC rate standard deviations.  

 
2. Process Noise 
In a Kalman filter implementation, process noise is used to represent the 

unmodeled accelerations and to prevent the covariances from getting too small.   

STK/OD has three types of process noise.  To capture the gravitational force 

uncertainties and other unknown forces such as outgassing there is process 

noise in the radial, in-track and cross track directions (RIC). The magnitude in 

each of these three directions is an input quantity. In addition, there is process 

noise associated with both the solar radiation and atmospheric drag forces.   

Since the orbit’s perigee was well above the atmospheric drag region (~29,500 

km), atmospheric drag was not considered.  The key question is what should the 

standard deviation of the process noise be, particularly with the different types of 

process noise. Due to the fact that a high order gravity model was used and lunar 
                                            

13 STK/OD manual. 
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and solar perturbations were included it was expected that the solar radiation 

pressure process noise would capture all the uncertainty.  For the solar radiation 

the satellite was modeled as a sphere.  To allow for the fact that the satellite is 

not a sphere an uncertainty in the two directions perpendicular to the satellite-sun 

line is allowed.  This uncertainty is modeled as process noise with a magnitude of 

0.3 times the solar radiation acceleration along the satellite-sun line with a half-

life of 300 minutes. Including only solar radiation uncertainty was not sufficient, 

the residuals were too large.  This was not due to station keeping maneuvers as 

a maneuver schedule was provided with the data and no maneuver was 

performed during the analysis time. Possibly some outgassing was occurring or 

there were momentum dumps that resulted in small linear accelerations that are 

caused by thruster mismatch.  Therefore, it was necessary to include process 

noise in the RIC directions.  A balance needed to be found between too much 

and too little unmodeled process noise in the satellite settings, and through 

numerous trials, it was found that a process noise of 0.01cm/s for each of the 

three RIC directions resulted in the necessary consistency in the residuals. 

Consequently, a process noise value of 0.01 cm/s was used for each axis. 
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III.  ANALYSIS 

A.   OBSERVATIONS 
A discussion of the observations is necessary before the analysis is 

presented.  As discussed previously, observations were provided to AMOS from 

Sirius satellite radio via MIT.  These observations were converted to the B3 

format required for STK/OD.  The Sirius observations in the month of December 

were fairly consistent, with an average of six observations per hour, spaced 

within a two minute timeframe, usually between :30 and :32 minutes past the 

hour, Greenwich Mean Time (GMT).   An example of the raw Sirius observation 

data is below: 
 
 
 
                                                          Source Ant   Type    Status       Data                           Estimate                          Noise                         Residual        

2004/12/09 15:30:22.264 c3_120920041530     QTB     range     accept      39325.0201 km          39367.1028 km          10.0000000 meters     -42082.6177 m 
2004/12/09 15:30:24.300 c3_120920041530     QTB   azimuth    accept      305.698000 degs        305.059170 degs      0.0200000000 degs       0.638830439 degs   
2004/12/09 15:30:24.300 c3_120920041530     QTB elevation    accept      43.8500000 degs        43.5886859 degs      0.0200000000 degs       0.261314137 degs   

 
 

The December Sirius observations were fairly consistent, except for some 

timeframes which were missing observations.  Unfortunately, some of these 

timeframes coincided with the timing of the Raven observations.  Fig. 4 below 

illustrates a timeframe in which there were gaps in Sirius observations (indicated 

by the TrackerID 999.00), coincident with Raven observations (shown as 998.1 

and 998.2):   
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Figure 4.   Sirius and RME Raven Observation Times 
 

Though there were many observations collected by the AMOS Raven, 

located at the summit of Mount Haleakala, from December into January, these 

observations were not useable, due to shutter control issues.  That left 

observations from the RME Raven, which was able to get approximately 200 

observations of azimuth and elevation during the 15-17 December timeframe.  

These observations are the basis of the analysis14, and there were enough 

observations to give a fairly clear picture of the results. 

 
The majority of RME Raven observations were collected on 15-16 

December, with ten observations of azimuth and elevation collected on 17 

December.  However, due to the exceptional one arc-second accuracy of the 

Raven telescope, the lack of observations is compensated by their accuracy.   

 
 
                                            

14 Observations made at the Maui Space Surveillance System (MSSS), Maui, Hawaii, USA 
are the result of collaboration between Dr. Chris Sabol and Detachment 15 of the US Air Force 
Research Laboratory, which owns and operates the MSSS. 
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B.   DATA QUALITY TESTS 
Once the observations were collected, an orbit had to be established in 

order to have a way of measuring improvement while determining the correct 

settings in STK/OD.  The baseline orbit was chosen to be the Sirius orbit from 9-

17 December, because of the number and quality of the range observations from 

the satellite.  A number of tests were performed on the data to ensure the 

settings in STK/OD and the quality of observations were sufficient to establish 

the baseline orbit.  One of these tests was the residuals check, shown in the 

graph in Fig. 5.  A sigma of 10 meters was used for the Quito tracker.  The 

residuals were consistent and reflected the expected result:  

 

 
 

Figure 5.   Sirius Range Only Residuals 
 

Another test that was completed was to examine the Solar Radiation 

Pressure (SRP) dynamics plot.  In STK/OD, the SRP estimate is shown as a 

correction to the estimated (input) value and the filter estimate.  Since the Sirius 

orbit has an apogee of ~54,800 km, solar pressure on the satellite is a factor in 

orbit determination.  To ensure an accurate solution, SRP was examined for any 
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perturbations which may skew the results.  The figure below shows that SRP was 

consistent enough as to not affect the results.  Both the SRP estimate and the +/- 

2 sigma values are shown in Fig. 6. 

 

 
 

Figure 6.   Solar Radiation Pressure Estimate 
 

A final test for goodness was the comparison of the filtered run versus the 

smoothed run.  The smoothed run is obtained by using the state and covariance 

at the final observation and performing a “backwards” filter with all the 

observations to obtain the optimal estimate during the span of data. This position 

consistency test ensures that the filter behaves as expected and there was not a 

large difference in the filtered results and the smoothed results.  Fig. 7 shows the 

normalized differences of range, in-track, and cross-track results.  The RIC 

values depicted in Fig. 7 show the difference in the filter run and the smoothed 

run using the McReynolds consistency test15 found in STK/OD.  The mean is 

zero, while the upper and lower bounds are +/- 3 sigma (dimensionless), visible 

at the upper and lower edges of the graph.  Values within the +/- 3 sigma are 

considered reasonable.   
                                            

15 Optimal Orbit Determination, STK/OD White Paper, Wright, J., p.5. 
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Figure 7.   Position Consistency Graph 
 

After establishing this orbit as the baseline orbit, the addition of the Raven 

observations and comparing the outputs of each was the next step.   All settings 

in STK/OD were kept the same as they were for the Sirius observations only 

runs, with the exception of settings which added the Raven azimuth and 

elevation observations to the scenario.  These settings can be seen in Appendix 

A. 

 
1.  Orbit Determination Methods 
A measure of the quality of an orbit determination is the accuracy of the 

orbit prediction.  The two primary approaches for determining this quality for 

different scenarios and sets of measurements are: (1) comparison of the actual 

orbit determination results, and (2) comparison of the covariances.  

 
Comparing the accuracy of actual orbit determination results for different 

scenarios and sets of measurements of orbit determination is difficult when there 
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is no concrete truth orbit. One approach often used is to perform an “abutment 

check”, perform an orbit determination for two separate fit spans, then propagate 

the state from one epoch of one fit span across the other fit span, or if the fit 

spans are not contiguous propagate each orbit to a common time point between 

the two fit spans, and difference the results.  This is shown graphically in Fig. 8 

below: 

 

Tracking Data

Fit Span 1

Orbit 1

Fit Span 2

Orbit 1

Orbit Comparison

Tracking Data

Fit Span 1

Orbit 1

Fit Span 1

Orbit 1

Fit Span 2

Orbit 1

Fit Span 2

Orbit 1

Orbit ComparisonOrbit Comparison
 

 
Figure 8.   Abutment Check 

 

If the orbit for the second fit span is truth, the difference is the error.  If it is 

not truth, the problem becomes determining how to interpret the results.  In the 

in-track direction, there is secular growth so if you predict long enough, this error 

will dominate the other errors during the fit span and one can assume the orbit 

during the fit span is truth.  This is not the case for radial and cross-track 

comparisons because these errors are periodic and generally do not grow.  

Consequently, the comparison of real world results usually only works in the in-

track direction. Since the “abutment check” is a comparison of actual results each 

case represents only one sample. To make any real conclusion from the 

“abutment check” there needs to be enough cases for a statistically reliable 
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sample.  Unfortunately, the lack of angle observations over an extended period of 

time resulted in only one case, which prevented any meaningful comparison of 

the actual results in the in-track direction. Thus, the approach focused on 

comparing elements of the covariance.   

 
2.  Covariance 
The covariance provides information on the accuracy of orbit 

determination.  It can be used for comparison or just for a single fit.  Of course, 

for the covariance to provide a valid assessment of the orbit determination 

accuracy, the modeling and sensors errors have to be accurately modeled.  If 

one is comparing covariances, one can reasonably argue in some cases if both 

are in error in the same manner, the comparison is valid.  For example, if the 

actual measurement errors for both fit spans are 5 arc-seconds, but are modeled 

as 10 arc-seconds, then the comparison should be valid. 

 
After the last time step in the filter run, STK/OD outputs a covariance 

matrix in the radial, in-track, and cross-track (RIC) reference frame.  The 

following are the filtered covariance and orbital elements outputs from the Sirius 

range only, and from the Sirius range plus Raven angles observations from the 

December 9-17 fit span: 

Sirius Range-Only:     Final Value 
 
Semimajor axis (km)     42164.509729 
Eccentricity      0.268586659 
True Arg of latitude (deg)    350.4501624 
Inclination (deg)      63.8292837 
Right Ascension of Ascending Node (RAAN) (deg) 29.6918866 
Arg of Perigee (deg)     269.8341598 
 
RIC Sigma Correlation Matrix (m & cm/s) 
 

83.94 m -0.86  0.92  0.89  -0.91  0.88 
  660.34 m -0.95  -1.00  0.98  -0.92 
    546.94 m 0.95  -0.98  0.96 
      5.90 cm/s -0.98  0.92 
        2.15 cm/s -0.95 
          2.22 cm/s 
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Sirius Range Plus Raven angles:   Final Value 

 
Semimajor axis (km)     42164.492647 
Eccentricity      0.26858577 
True Arg of latitude (deg)    350.4477400 
Inclination (deg)      63.8294392 
Right Ascension of Ascending Node (RAAN) (deg) 29.6886020 
Arg of Perigee (deg)     269.8303219 
 
RIC Sigma Correlation Matrix (m & cm/s) 
 

33.56 m -0.01  0.32  0.34  -0.38  0.19 
  121.60 m 0.00  -0.91  0.69  0.09 
    65.76 m -0.02  -0.40  0.60 
      1.02 cm/s -0.63  -0.08 
        0.37 cm/s -0.22 
            0.52 cm/s 
 
Here the following matrix is represented: 
σ ρ ρ ρ ρ ρ

σ ρ ρ ρ ρ
σ ρ ρ ρ

σ ρ ρ
σ ρ

σ

X X Y X Z XX XY XZ

Y Y Z YZ YY YZ

Z ZX ZY ZZ

X XY XZ

Y YZ

Z

 

 

Here, Xσ , Yσ , and Zσ  denote the standard deviations of the radial error 

(X), in-track error (Y), and cross-track error (Z) and their rates of change 

( )X Y Z, ,σ σ σ .  ρ  values are the correlation coefficients of the two values listed in 

the subscript of each ρ .  

Making direct comparisons of these quantities provides no useful 

information because they are periodic and possibly secular.  The in-track error 

growth rate (drift rate) is caused by a semi-major axis error.  The radial error is 

caused primarily by an eccentricity error and the cross-track error is caused by 
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an error in the orbit plane estimate.  The following equations16 are taken from 

reference (7).  The drift rate, d, is proportional to the semi-major axis error: 

 
  (1) 

 

where δa is the semi-major axis error. The orbit plane error γ is given by  

 

 
 ( )22 2 Ω= +γ δi δ sin i  (2) 

 

where ( ),δi i  are the inclination and inclination error, and, δΩ  is the right 

ascension error. From ref [7], these quantities as a function of the RIC errors and 

error rates are 

 

 

( ) ( ) ( )

( )

2

4

4

2 2 2
2 2

2 2 2 2

2 12 1

2 1

2

δ
η η

ηδ

γ

+
⎡ ⎤= + + +⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

+
= +

r t c

c c c t c

t r r

t t t

e cos f
a e sin f X ecos f Y X

n

a X V X V V Ye - -
e R R V V V V V

V V Z VZ - ZZ
R V V RV

 (3) 

 
where 

 

 

2

2 1/ 2

(1- )
/(1 cos )

(1- )

(1 cos )( ( / ))

( sin )( ( / ))

/

η
µ

µ

µ

µ

=
= +
=

=

= +

=

=

t

r

c

p a e
R p e f

e

h p

V e f p

V e f p

V a

 (4) 

                                            
16 The State Transition Matrix of Relative Motion for the Perturbed Non-Circular 

Reference Orbit, by Gim, D. and Alfriend, K., AIAA J. of Guidance, Control, and Dynamics, Vol. 
26, No. 6 November-December 2003, pp 956-971. 
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In equations (3) and (4), (
.

X ,X ) = radial, radial rate, (
.

Y ,Y ) = in-track, in-

track rate, (
.

Z ,Z ) = cross-track, cross-track rate.  t r cV ,V ,V  are the tangential, radial 

and circular velocities, respectively, p  is the semi-latus rectum, R  is the radius, 

a  is the semi-major axis, h  is the angular momentum, µ  is the gravitational 

parameter, and f  is the true anomaly. 

The standard deviations of the quantities in equation (3) are 

 
Semi-major Axis Error: 
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Eccentricity Error: 
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Orbit Plane Error: 
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C.   RESULTS 

Using the STK/OD provided classical orbital elements and covariance 

matrices, the numerical values for semi-major axis error, orbit plane error, and 

eccentricity error for the range only and the range and angles cases are 

summarized in Table (1) below. 

 
Metric Range Only Range+Angles    Difference Imp % 

Semi-major-Axis Error (m) 109.226 108.754    0.472 0.432% 
Orbit Plane Error (deg) 0.000857 0.000127    0.000730 85.221% 

Eccentricity Error 0.0000283 0.00000539    0.0000229 81.028% 
 

Table 1.   Metric Results Comparison 
 

What can be seen here is that there is a significant improvement of over 

80% in both the orbit plane uncertainty and eccentricity estimate differences 

when Raven angles observations are used in conjunction with the range 

observations, even though there is only a very slight improvement in the semi-

major axis error.  This demonstrates that Raven angle observations improved the 

orbit determination parameters for this satellite.   
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IV. CONCLUSIONS 

 
The Raven telescope is a valuable asset to the space surveillance 

network, as it has already proved itself in tracking Geosynchronous satellites.  

Due to its accuracy, it was a natural fit to attempt to track (with the same orbit 

determination accuracy) Highly Eccentric Orbiting satellites.  This study, though 

limited, has shown that Raven is ready to take the next step in completing the 

goal to track any deep space man-made object orbiting the earth.  By 

strengthening the quality of the HEO object’s orbit parameters, follow-on tracking 

is improved with a smaller search area for the object.  This leads to better space 

situational awareness.  

Because there was only three days of angles data, it was not possible to 

completely verify Raven could track HEO objects with the same accuracy.  For 

this thesis, it would have been better to have a full week or more of Raven angle 

observations in which to build an orbit from, then to compare with a range only 

orbit.  Abutment checks could have been completed and used for another proof 

of the increased orbit determination accuracy of the Raven telescope.  However, 

based on the improvement in critical orbit metrics, this analysis makes a strong 

point for follow on testing against more objects in highly eccentric orbits. 

For a complete evaluation of the angle observation contribution, a solid 

30-day period of Raven angles observations would be enough to not only add to 

range only observations as done in this thesis, but to build an entirely new orbit.  

This new angle-only orbit could then be compared to a range-only orbit.  If the 

two orbits compare favorably, it would indicate that the Raven could be a reliable 

sensor to track Highly Eccentric Orbits.  There is more work to be done and all 

indications are that with enough data and sufficient documentation, HEO objects 

could then be added to Raven’s object tracking list.  
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APPENDIX A.  STK/OD SCENARIO SETTINGS 

 
1. FACILITY (Quito) 
 

• Position Geodetic 
o Lat  -0.273042 deg 
o Lon  281.524 deg 
o Alt  2604 m 

• Tracking ID    999 
• Estimate Nothing 
• MinElevation 5 deg 
• MaxElevation 90 deg 
• RangingMethod Transponder 
• AntennaType Mechanical 
• Optical Properties 

o PolarExclusion 1 deg 
o ReferenceFrame    MEME of Date 
o AberrationCorrections None 

• TroposphereModel 
o Enabled No 
o Model SCF 

• TroposphereData  
o SurfaceRefractivity Constant 
o Value 340 

• IonosphereModel 
o Enabled No 
o Model IRI2001 
o TransmitFreq 2267.5MHz 
o ReceiveFreq 1815.77MHz 

 
2. FACILITY (RMERaven) 
 

• Position Geodetic 
o Lat  20.7462 deg 
o Lon  203.568 deg 
o Alt  105.38 m 

• Tracking ID    998 
• Estimate Nothing 
• MinElevation 5 deg 
• MaxElevation 90 deg 
• RangingMethod SkinTrack 
• AntennaType Optical 
• Optical Properties 

o PolarExclusion 1 deg 
o ReferenceFrame    MEME J2000 
o AberrationCorrections None 

• TroposphereModel 
o Enabled No 
o Model SCF 

• TroposphereData  
o SurfaceRefractivity Constant 
o Value 340 

• IonosphereModel 
o Enabled No 
o Model IRI2001 
o TransmitFreq 2267.5MHz 
o ReceiveFreq 1815.77MHz 
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3. INITIAL ORBIT DETERMINATION (IOD) 
 

• Method GoodingAnglesOnly 
o TrackerList  Quito 
o StartTime  09 Dec 2004 00:00:00.000 UTCG 
o StopMode  LastMeasurement 
o MeasurementSampleSize 300 
o MinimumElevation  5 deg 
o SelectedMeasurments Double click to edit 
o HalfRevEstimate 0 
o LambertIndicator 0 
o Range1Estimate 5 Re 
o Range3Estimate 5 Re 
o MaxIterations 25 
o ConvergenceValue 1e-012 
o HalleyNewtonLimit 0.5 
o NumericPartialEpsilon 1e-005 
o T12 7176.33 sec 
o T13 10742.2 sec 

• Solutions 
o NumberOfSolutions  2 
o UseSolution 1 

• Output 
o OrbitState Keplerian 
o CoordinateFrame J2000 

 
 
4. FILTER 
 

• ProcessControl 
o StartMode Initial 
o StartTime  9 Dec 2004 03:30:47.475 UTCG 
o StopMode  StopTime 
o StopTime  31 Dec 2004 23:59:59.990 UTCG 
o ProcessNoiseUpdateInterval 1 min 

• Restart 
o SaveRecordstoFile false 
o MaxRecordsinFile 100 
o SaveFrequency 60 min 

• OptionalSolveForParms 
o MeasBiases true 

• Output 
o DataArchive 

 OutputStateHistory AllTimes 
 EveryNSteps 1 
 SaveOnlyLastMeasPerStep false 
 OutputMeasHistory true 
 OutputManeuvers false 
 OutputSummary true 
 OutputHistograms true 
 HistogramSize 3 
 NumberHistorgramBins 22 

o Display 
 EveryNMeasUpdates 1 
 EveryNTimeUpdates  1 
 ShowPassTimes  true 

o SmootherData 
 Generate  true 
 TimeMode FilterSpan 

o STKEphemeris 
 DuringProcess 

• Generate  false 
 Predict 
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• Generate  false 
 
 
5. SMOOTHER 
 

• Input 
o Files double click to edit 
o Remove false 

• ProcessControl 
o StartMode LatestFilterTime 
o StartTime  31 Dec 2004 23:59:59.990 UTCG 
o StopMode  EarliestFilterTime 
o StopTime  9 Dec 2004 03:30:47.475 UTCG 
o OutputLag 0 min 
o IntervalLength 1440 min 
o IntervalOverlap 720 min 

• Output 
o DataArchive 

 OutputStateHistory AllTimes 
 EveryNSteps 1 
 OutputManeuvers true 

o STKEphemeris 
 DuringProcess 

• Generate true 
• TimeGrid Filter 

 Predict 
• Generate true 
• TimeStep 1 min 
• StopMode TimeSpan 
• TimeSpan 720 min 

 Covariance true 
 CovarianceType position 3x3 Covariance 

 
 
6. SATELLITE 
 

• Description 
• OrbitState Keplerian 
• EstimateOrbit true 
• OrbitClass LOeHEO 
• PhysicalProperties 

o Mass 3000 kg 
• MeasurementProcessing 

o TrackingID 26626 
o MeasurementTypes Range Azimuth Elevation 
o ResidualEditing 

 NominalSigma 3 
 Dynamic 

• Enabled  true 
• HighSigma 10 
• NumRejectToStart 2 
• NumAcceptToStop 10 
• InitialHighSigmaDuration 120 min 

o ThinningTime 0 sec 
o MinPassDelta 20 min 

• MeasurementStatistics None 
• MinGrazingAlt 100000 m 
• OpticalProperties  

o PolarExclusion 1 deg 
o ReferenceFrame MEME of Date 
o AberrationCorrections None 

• RangingMethod Transponder 
• IonosphereModel 

o Enabled false 
• ForceModel 

o Gravity 
 DegreeandOrder  12 
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 Tides 
• SolidTides false 
• OceanTides false 

 GeneralRelativityCorrection false 
 VariationalEquations 

• Degree 2 
 ProcessNoise 

• Use BasedOnOrbitClass 
• WillUseProcessNoise  true 
• OmissionErrorModeling 

o Enabled false 
o Scale 1 

• CommissionErrorModeling 
o Enabled false 
o Scale 1 

• ThirdBodies 
o Sun true 
o Moon true 
o Planets flase 
o UseinVariationaEquations false 

o Drag 
 Use BasedOnOrbit  
 WillUseAirDrag false 

o SolarPressure 
 Use BasedOnOrbit 
 WillUseSolarPressure true 
 EstimateSRP  true 
 CPNominal  3 
 Area   38 m^2 
 CPInitialEstimate  0 
 CPHalfLife  300 min 
 ReflectionModel  Sphere with diffuse reflection 
 SunPosMethod  ApparentToTrueCB 
 UseInVariationalEquations true 
 AddProcessNoise  true 
 EclipticNorthFraction 0.3 
 EclipticPlaneFraction 0.3 

o Plugin  
 Use false 

o UnmodeledAccelerations 
 ProcessNoise 

• RadialVelocitySigma  0.01 cm*sec^-1 
• IntrackVelocitySigma 0.01 cm*sec^-1 
• CrosstrackVelocitySigma 0.01 cm*sec^-1 
• TimeInterval  2 min 

 InstantManeuvers   InstantManeuvers 
 FiniteManeuvers   FiniteManeuvers 
 OrbitErrorTransitionMethod  VariationalEquations 

• PropagatorControls 
o IntegrationMethod  RKF 7(8) 
o StepSize 

 Time  .5 min 
 TrueAnomaly 2 deg 
 EccentricityThreshold 0.04 

• EphemerisGeneration 
o CreateSTKFile  false 

• OrbitUncertainty 
o R_Sigma   100000 m 
o I_Sigma   100000 m 
o C_Sigma   100000 m 
o Rdot_Sigma  100 m*sec^-1 
o Idot_Sigma  100 m*sec^-1 
o Cdot_Sigma  100 m*sec^-1 
o AllCorrelations  0 

• FilterEvents 
o MeasurementRejectThreshold 

 NumForWarning 0 
 NumForAlert 0 

o MeasurementAcceptTimer 
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 TimeGapForWarning 0 min 
TimeGapForAlert  0 
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